Stability analysis for stationary solutions of the Mullins–Sekerka flow with boundary contact

نویسندگان

چکیده

We first give a complete linearized stability analysis around stationary solutions of the Mullins–Sekerka flow with 90° contact angle in two space dimensions. The include flat interfaces, as well arcs circles. investigate different behaviour dependence properties solution, such its curvature and length, boundary domain at points. show that changes terms these parameters, ranging from exponential to instability. also result on nonlinear for curved boundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Stability of Stationary Solutions for Surface Diffusion with Boundary Conditions

The volume preserving fourth order surface diffusion flow has constant mean curvature hypersurfaces as stationary solutions. We show nonlinear stability of certain stationary curves in the plane which meet an exterior boundary with a prescribed contact angle. Methods include semigroup theory, energy arguments, geometric analysis and variational calculus.

متن کامل

Nonlinear stability of stationary solutions for curvature flow with triple junction

In this paper we analyze the motion of a network of three planar curves with a speed proportional to the curvature of the arcs, having perpendicular intersections with the outer boundary and a common intersection at a triple junction. As a main result we show that a linear stability criterion due to Ikota and Yanagida [13] is also sufficient for nonlinear stability. We also prove local and glob...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2022

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.201900303